III. A.

1. The probability that a player wins 5 times in a row is $\frac{1}{243}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of winning the shell game 1 time is $\frac{1}{3}$.
Let W represent winning the shell game 1 time.

$$
\begin{aligned}
& P(W)=\frac{1}{3} \\
& P(W, W, W, W, \text { and } W)=P(W) \cdot P(W) \cdot P(W) \cdot P(W) \cdot P(W) \\
&=\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \\
&=\frac{1}{243}
\end{aligned}
$$

2. The probability of choosing the same student 5 days in a row is $\frac{1}{7,962,624}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of choosing the one particular student is $\frac{1}{24}$.
Let S represent choosing a particular student.

$$
\begin{aligned}
& P(S)=\frac{1}{24} \\
& P(S, S, S, S, \text { and } S)=P(S) \cdot P(S) \cdot P(S) \cdot P(S) \cdot P(S) \\
&=\frac{1}{24} \cdot \frac{1}{24} \cdot \frac{1}{24} \cdot \frac{1}{24} \cdot \frac{1}{24} \\
&=\frac{1}{7,962,624}
\end{aligned}
$$

3. The probability that the first two spinners land on 1 is $\frac{1}{24}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of the 1 st spinner landing on 1 is $\frac{1}{6}$.
$P(1$ on 1 st spinner $)=\frac{1}{6}$
The probability of the 2 nd spinner landing on 1 is $\frac{1}{4}$.
$P(1$ on 2 nd spinner $)=\frac{1}{4}$
The probability of the 3 rd spinner landing on any number is $\frac{12}{12}$, or 1 .
$P($ any number on $3 r d$ spinner $)=1$
I don't have to include the probability of the 3rd spin in my calculation because multiplying by 1 will not affect the final answer.
$P(1$ on 1 st spinner and 1 on 2 nd spinner $)=P(1$ on 1 st spinner $) \cdot P(1$ on 2 nd spinner $)$

$$
\begin{aligned}
& =\frac{1}{6} \cdot \frac{1}{4} \\
& =\frac{1}{24}
\end{aligned}
$$

4. The probability of choosing a block labeled W from the second set is $\frac{1}{4}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of choosing any block from the first set is $\frac{12}{12}$, or 1 .
$P($ any block $1 s t)=1$
The probability of choosing a block labeled W from the second set is $\frac{3}{12^{\prime}}$ or $\frac{1}{4}$.
$P(W 2 n d)=\frac{1}{4}$
I don't have to include the probability of any block 1st in my calculation because multiplying by 1 will not affect the final answer. So, the final answer is $P(W 2 n d)=\frac{1}{4}$.
5. The probability of choosing two marbles with stripes is $\frac{7}{34}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of choosing a marble with stripes from the 1 st set is $\frac{7}{17}$.
Let A represent choosing a marble with stripes from the 1st set.
$P(A)=\frac{7}{17}$
The probability of choosing a marble with stripes from the 2 nd set is $\frac{9}{18}$, or $\frac{1}{2}$.
Let B represent choosing a marble with stripes from the 2 nd set.
$P(B)=\frac{1}{2}$

$$
\begin{aligned}
P(A \text { and } B) & =P(A) \cdot P(B) \\
& =\frac{7}{17} \cdot \frac{1}{2} \\
& =\frac{7}{34}
\end{aligned}
$$

6. The probability that a player wins 5 times in a row is $\frac{1}{9,765,625}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of me or my friend winning the prize 1 time is $\frac{2}{50}$, or $\frac{1}{25}$.
Let W represent me or my friend winning the prize 1 time.

$$
\begin{aligned}
& P(W)=\frac{1}{25} \\
& P(W, W, W, W, \text { and } W)=P(W) \cdot P(W) \cdot P(W) \cdot P(W) \cdot P(W) \\
&=\frac{1}{25} \cdot \frac{1}{25} \cdot \frac{1}{25} \cdot \frac{1}{25} \cdot \frac{1}{25} \\
&=\frac{1}{9,765,625}
\end{aligned}
$$

III. B.

1. The probability of choosing a block labeled with a T or a block labeled with a 6 is $\frac{11}{32}$.
2. The probability of choosing a rotten apple or a rotten orange is $\frac{41}{432}$.
3. The probability of a one on the 1 st roll or a one on the 2 nd roll is $\frac{11}{36}$.
4. The probability of landing on a number greater than 9 on the 1st spin or a number less than 6 on the 2 nd spin is $\frac{9}{16}$.
5. The probability that the student chosen from the math class or the student chosen from the history class is in the band is $\frac{15}{32}$.
6. The probability of choosing a pyramid from the shaded set or a cylinder from the unshaded set is $\frac{79}{169}$.

III. C.

1. The probability of choosing a 2 first and a 3 second is $\frac{1}{9}$.
2. The probability of choosing a green marble first, a red marble second, and a blue marble third is $\frac{96}{15,625}$.
3. The probability of choosing a triangle first or a square second is $\frac{4}{9}$.
4. The probability of choosing an A block first or a D block second is $\frac{29}{64}$.
5. The probability of choosing a quarter first or a dime second is $\frac{49}{121}$.
6. The probability of choosing a green block first, a yellow block second, and a blue block third is $\frac{9}{2662}$.

IV. A.

1. The probability of choosing all 4 aces is $\frac{1}{270,725}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of choosing an ace first is $\frac{4}{52}$, or $\frac{1}{13}$.
The probability of choosing an ace second is $\frac{3}{51}$, or $\frac{1}{17}$.
The probability of choosing an ace third is $\frac{2}{50}$, or $\frac{1}{25}$.
The probability of choosing an ace fourth is $\frac{1}{49}$.
$P($ ace 1st, ace 2nd, ace 3 rd, and ace 4 th $)=P($ ace 1st $) \cdot P($ ace 2nd $) \cdot P($ ace $3 r d) \cdot P($ ace 4th $)$

$$
\begin{aligned}
& =\frac{1}{13} \cdot \frac{1}{17} \cdot \frac{1}{25} \cdot \frac{1}{49} \\
& =\frac{1}{270,725}
\end{aligned}
$$

2. The probability that the first two ribbons will be yellow is $\frac{1}{51}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of choosing a yellow ribbon 1st is $\frac{3}{18}$, or $\frac{1}{6}$.
The probability of choosing a yellow ribbon 2 nd is $\frac{2}{17}$.
The probability of choosing any ribbon 3 rd is $\frac{16}{16}$, or 1 .
I don't have to include the probability of choosing any ribbon 3rd in my calculation because multiplying by 1 will not affect the final answer.
$P($ yellow 1st and yellow 2nd $)=P($ yellow 1st) $\cdot P$ (yellow 2nd $)$

$$
\begin{aligned}
& =\frac{1}{6} \cdot \frac{2}{17} \\
& =\frac{1}{51}
\end{aligned}
$$

3. The probability of choosing 4 discs in alphabetical order is $\frac{9}{1820}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of choosing a disc with an A 1st is $\frac{6}{16}$, or $\frac{3}{8}$.
The probability of choosing a disc with a B 2nd is $\frac{3}{15}$, or $\frac{1}{5}$.
The probability of choosing a disc with a C 3rd is $\frac{3}{14}$.
The probability of choosing a disc with a D 4th is $\frac{4}{13}$.

$$
\begin{aligned}
P(A \text { 1st, B 2nd, C 3rd, and D 4th }) & =P(\mathrm{~A} 1 \mathrm{st}) \cdot P(\mathrm{~B} 2 \mathrm{nd}) \cdot P(\mathrm{C} 3 \mathrm{rd}) \cdot P(\mathrm{D} 4 \mathrm{th}) \\
& =\frac{3}{8} \cdot \frac{1}{5} \cdot \frac{3}{14} \cdot \frac{4}{13} \\
& =\frac{36}{7280} \\
& =\frac{9}{1820}
\end{aligned}
$$

4. The probability of Evan choosing a quarter 1st is $\frac{2}{7}$.

I calculated the answer by using the Rule of Compound Probability involving and.
The probability of choosing a quarter 1 st $\frac{6}{21}$ is, or $\frac{2}{7}$.
The probability of choosing any coin 2 nd is $\frac{20}{20}$, or 1 .
The probability of choosing any coin 3 rd is $\frac{19}{19}$, or 1 .
I don't have to include the probability of choosing any coin 2 nd or the probability of choosing any coin $3 r d$ in my calculation because multiplying by 1 will not affect the final answer. So, the probability of Evan choosing a quarter 1 st is $\frac{2}{7}$.
5. The probability of choosing 4 students with birthdays in June, July, or August is $\frac{2}{325}$.

I calculated the answer by using the Rule of Compound Probability involving "and".
The probability of the 1st student having a birthday in June, July, or August is $\frac{9}{28}$.
The probability of the 2nd student having a birthday in June, July, or August is $\frac{8}{27}$.
The probability of the 3rd student having a birthday in June, July, or August is $\frac{7}{26}$.
The probability of the 4th student having a birthday in June, July, or August is $\frac{6}{25}$.
Let B represent choosing a student with a birthday in June, July, or August.
$P(B 1 s t, B 2 n d, B 3 r d$, and B 4th $)=P(B 1 s t) \cdot P(B 2 n d) \cdot P(B 3 r d) \cdot P(B 4 t h)$

$$
\begin{aligned}
& =\frac{9}{28} \cdot \frac{8}{27} \cdot \frac{7}{26} \cdot \frac{6}{25} \\
& =\frac{3024}{491,400} \\
& =\frac{2}{325}
\end{aligned}
$$

6. The probability of the 1 st cards not having a 9 as one of its digits and the 2 nd and 3 rd cards having a 9 as one of their digits is $\frac{41}{7095}$.
I calculated the answer by using the Rule of Compound Probability involving and.
The probability that the 1st number does not have a 9 as one of its digits is $\frac{41}{45}$.
The probability that the 2 nd number has a 9 as one of its digits is $\frac{4}{44}$.
The probability that the 3 rd number has a 9 as one of its digits is $\frac{3}{43}$.
Let N represent choosing a card that has a 9 as one of its digits.
$P($ not $N 1$ st and $N 2$ nd and $N 3$ rd $)=P($ not $N 1$ st $) \cdot P(N 2 n d) \cdot P(N$ 3rd $)$

$$
\begin{aligned}
& =\frac{41}{45} \cdot \frac{4}{44} \cdot \frac{3}{43} \\
& =\frac{492}{85,140} \\
& =\frac{41}{7095}
\end{aligned}
$$

IV. B.

1. The probability of choosing a blue sock first or a green sock second is $\frac{83}{190}$.
2. The probability of choosing a cube with a 2 first or a cube with a 3 second is $\frac{32}{105}$.
3. The probability that I will be chosen first or my friend will be chosen second is $\frac{27}{574}$.
4. The probability that the first ball has stars or the second ball has stripes is $\frac{109}{190}$.
5. The probability of choosing an ace first or a King second is $\frac{98}{663}$.
6. The probability of a favorite song first or a favorite song second is $\frac{94}{325}$.

IV. C.

1. The probability of choosing a pyramid first, cube second, and cylinder third is $\frac{9}{220}$.
2. The probability of choosing a pear first or an orange second is $\frac{29}{66}$.
3. The probability of choosing a white ball first or a shaded ball second is $\frac{11}{15}$.
4. The probability that the first student will draw an A and the second student will draw a B is $\frac{137}{276}$.
5. The probability of choosing a black sock first and a black sock second is $\frac{14}{95}$.
6. The probability of choosing a J block first or a K block second is $\frac{53}{91}$.
7. The probability of choosing a numbered card first or a King second is $\frac{158}{221}$.
8. The probability of choosing a blue t-shirt first and another blue t-shirt second is $\frac{1}{11}$.
